Scientific American Supplement, No. 441, June 14, 1884. by Various
page 36 of 155 (23%)
page 36 of 155 (23%)
|
in opposite directions with equal velocities, which gives _n_/_m_ = -1;
but when A is fixed and T revolves, we have _m'_ = 0, whence in the general formula n' - a ------ = -1, or n' = 2 a; -a which means, being interpreted, that F makes two rotations about its axis during one revolution of T, and in the same direction. Again, let A and F be equal in the 3-wheel train, Fig. 16, the former being fixed as before. In this case we have: n --- = 1, m' = 0, which gives m n' - a ------- = 1, [therefore] n' = 0; -a that is to say, the wheel F, which now evidently has a motion of circular translation, does not rotate at all about its axis during the revolution of the train-arm. [Illustration: PLANETARY WHEEL TRAINS. Fig. 16] All this is perfectly consistent, clearly, with the hypothesis that the motion of circular translation is a simple one, and the motion of revolution about a fixed axis is a compound one. |
|