Scientific American Supplement, No. 441, June 14, 1884. by Various
page 42 of 155 (27%)
page 42 of 155 (27%)
|
n 20 n' 20
For the wheel F, --- = ---- = ----, [therefore] n' = - ---- a; m 19 -a 19 n n' For the wheel H, --- = 1 = ----, [therefore] n' = -a; m -a n 20 n' 20 For the wheel K, --- = ---- = ----, [therefore] n' = - ---- a, m 21 -a 21 which corresponds with the actual state of things; all three wheels rotate in the same direction, the central one at the same rate as the train arm, one a little more rapidly and the third a little more slowly. It is, then, absolutely necessary to make this modification in the general formula, in order to apply it in determining the rotations of any wheel of an epicyclic train whose axis is not parallel to that of the sun-wheels. And in this modified form it applies equally well to the original arrangement of Ferguson's paradox, if we abandon the artificial distinction between "absolute" and "relative" rotations of the planet-wheels, and regard a spur-wheel, like any other, as rotating on its axis when it turns in its bearings; the action of the device shown in Fig. 18 being thus explained by saying that the wheel H turns once backward during each forward revolution of the train-arm, while F turns a little more and K a little less than once, in the same direction. In this way the classification and analysis of these combinations are made more simple and consistent, and the |
|