Scientific American Supplement, No. 441, June 14, 1884. by Various
page 55 of 155 (35%)
page 55 of 155 (35%)
![]() | ![]() |
|
taken with the left eye.]
A second theory, often broached, in order to account for the divergence of the charge, is that the barrel which is not being fired, by its _vis inertia_ in some way causes the shot to diverge. In order to test this, Mr. Phillips took a single rifle and secured it near the muzzle to a heavy block of metal, when the accuracy of the shooting was in no way impaired. So far the experiments were of a negative character, and the next step was made with a view to discover the actual cause of the divergence referred to. A single barrel was now taken, to which a template was fitted, in order to record its exact length. The barrel was then subjected to a heavy internal hydrostatic pressure. Under this treatment it expanded circumferentially and at the same time was reduced in length. This, it was considered, gave a clew to the solution of the problem. A pair of barrels was now taken and a template fitted accurately to the side of the right-hand one. As the template fitted the barrel when the latter was not subject to internal pressure, upon such pressure being applied any alterations that might ensue in the length or contour of the barrel could be duly noted. The right-hand barrel was then subjected to internal hydrostatic pressure. The result is shown in an exaggerated form in Fig. 2. It will be seen that both barrels are bent into an arched form. This would be caused by the barrel under pressure becoming extended circumferentially, and thereby reduced in length, because the metal that is required to supply the increased circumference is taken to some extent from the length, although the substance of metal in the walls of the barrel by its expansion contributes also to the increased diameter. A simple illustration of this effect is supplied by subjecting an India-rubber |
|