Scientific American Supplement, No. 441, June 14, 1884. by Various
page 99 of 155 (63%)
page 99 of 155 (63%)
![]() | ![]() |
|
becomes constantly darker and finally taking a velvet-black. As its
stratification upon the platinum is unequal, it forms beautifully colored rings. Experiments show that the quantity of peroxide deposited depends on the nature of the solution and the strength of the current. In case of very feeble currents and slight acidity, its quantity is so small that it does not need to be taken into consideration. If the lead solution is very dilute scarcely any current is observed, lead solutions _per se_ being very bad conductors of electricity. Faintly acid concentrated lead solutions give loose peroxide along with much spongy metallic lead. Free alkali decreases the separation of peroxide; feebly alkaline solutions, concentrated and dilute, yield relatively much peroxide along with metallic lead, while strongly alkaline solutions deposit no peroxide. Dried lead peroxide is so sparingly hygroscopic that it may be weighed as such; its weight remains constant upon the balance for a long time. In order to apply the peroxide for quantitative determinations, a large surface must be exposed to action. As positive electrode a platinum capsule is convenient, and a platinum disk as negative pole. The capsule shape is necessary because the peroxide when deposited in large quantities adheres only partially, and falls in part in thin loose scales. It is necessary to siphon off the nitric solution, since, like all peroxides, that of lead is not absolutely insoluble in nitric acid. The methods of Riche and May give results which are always too high, since portions of saline solution are retained by the spongy deposit and can be but very imperfectly removed by washing. This is especially the case in presence of free alkali. |
|