Scientific American Supplement, No. 613, October 1, 1887 by Various
page 26 of 148 (17%)
page 26 of 148 (17%)
![]() | ![]() |
|
CHAPIN WROUGHT IRON. By W.H. SEARLES, Chairman of the Committee, Civil Engineers' Club of Cleveland, O. Notwithstanding the wonderful development of our steel industries in the last decade, the improvements in the modes of manufacture, and the undoubted strength of the metal under certain circumstances, nevertheless we find that steel has not altogether met the requirements of engineers as a structural material. Although its breaking strain and elastic limit are higher than those of wrought iron, the latter metal is frequently preferred and selected for tensile members, even when steel is used under compression in the same structure. The Niagara cantilever bridge is a notable instance of this practice. When steel is used in tension its working strains are not allowed to be over fifty per cent. above those adopted for wrought iron. The reasons for the suspicion with which steel is regarded are well understood. Not only is there a lack of uniformity in the product, but apparently the same steel will manifest very different results under slight provocation. Steel is very sensitive, not only to slight changes in chemical composition, but also to mechanical treatment, such as straightening, bending, punching, planing, heating, etc. Initial strains may be developed by any of these processes that would seriously affect the efficiency of the metal in service. |
|