The Number Concept - Its Origin and Development by Levi Leonard Conant
page 87 of 286 (30%)
page 87 of 286 (30%)
![]() | ![]() |
|
of counting. The natives, who are to be classed among the lowest and the
least intelligent of the aboriginal races of the world, have number systems of the most rudimentary nature, and evince a decided tendency to count by twos. This peculiarity, which was to some extent shared by the Tasmanians, the island tribes of the Torres Straits, and other aboriginal races of that region, has by some writers been regarded as peculiar to their part of the world; as though a binary number system were not to be found elsewhere. This attempt to make out of the rude and unusual method of counting which obtained among the Australians a racial characteristic is hardly justified by fuller investigation. Binary number systems, which are given in full on another page, are found in South America. Some of the Dravidian scales are binary;[167] and the marked preference, not infrequently observed among savage races, for counting by pairs, is in itself a sufficient refutation of this theory. Still it is an unquestionable fact that this binary tendency is more pronounced among the Australians than among any other extensive number of kindred races. They seldom count in words above 4, and almost never as high as 7. One of the most careful observers among them expresses his doubt as to a native's ability to discover the loss of two pins, if he were first shown seven pins in a row, and then two were removed without his knowledge.[168] But he believes that if a single pin were removed from the seven, the Blackfellow would become conscious of its loss. This is due to his habit of counting by pairs, which enables him to discover whether any number within reasonable limit is odd or even. Some of the negro tribes of Africa, and of the Indian tribes of America, have the same habit. Progression by pairs may seem to some tribes as natural as progression by single units. It certainly is not at all rare; and in Australia its influence on spoken number systems is most apparent. Any number system which passes the limit 10 is reasonably sure to have either a quinary, a decimal, or a vigesimal structure. A binary scale |
|