General Science by Bertha M. Clark
page 317 of 391 (81%)
page 317 of 391 (81%)
![]() | ![]() |
|
helix is capable of continued rotation around its support.
In practice, the rotating coil of a motor is arranged as shown in Figure 229. Wires from the coil terminate on metal disks and are securely soldered there. The coil and disks are supported by the strong and well-insulated rod _R_, which rests upon braces, but which nevertheless rotates freely with disks and coil. The current flows to the coil through the thin metal strips called brushes, which rest lightly upon the disks. When the current which enters at _B_ flows through the wire, the coil rotates, tending to set itself so that its north face is opposite the south face of the magnet. If, when the helix has just reached this position, the current is reversed--entering at _B'_ instead of _B_--the poles of the coil are exchanged; the rotation, therefore, does not cease, but continues for another half turn. Proper reversals of the current are accompanied by continuous motion, and since the disk and shaft rotate with the coil, there is continuous rotation. If a wheel is attached to the rotating shaft, weights can be lifted, and if a belt is attached to the wheel, the motion of the rotating helix can be transferred to machinery for practical use. The rotating coil is usually spoken of as the armature, and the large magnet as the field magnet. 310. Mechanical Reversal of the Current. _The Commutator_. It is not possible by hand to reverse the current with sufficient rapidity and precision to insure uninterrupted rotation; moreover, the physical exertion of such frequent reversals is considerable. Hence, some |
|