Amusements in Mathematics by Henry Ernest Dudeney
page 56 of 735 (07%)
page 56 of 735 (07%)
![]() | ![]() |
|
they formed a simple addition sum, the two upper rows of figures
producing the sum in the lowest row. But the most surprising point was this: that he had so arranged them that the addition in A gave the smallest possible sum, that the addition in C gave the largest possible sum, and that all the nine digits in the three totals were different. The puzzle is to show how this could be done. No decimals are allowed and the nought may not appear in the hundreds place. 80.--THE THREE GROUPS. There appeared in "Nouvelles Annales de Mathématiques" the following puzzle as a modification of one of my "Canterbury Puzzles." Arrange the nine digits in three groups of two, three, and four digits, so that the first two numbers when multiplied together make the third. Thus, 12 × 483 = 5,796. I now also propose to include the cases where there are one, four, and four digits, such as 4 × 1,738 = 6,952. Can you find all the possible solutions in both cases? 81.--THE NINE COUNTERS. [Illustration: (1)(5)(8) (7)(9) (2)(3) (4)(6) ] I have nine counters, each bearing one of the nine digits, 1, 2, 3, 4, |
|