Amusements in Mathematics by Henry Ernest Dudeney
page 61 of 735 (08%)
page 61 of 735 (08%)
![]() | ![]() |
|
It is another good puzzle so to arrange the nine digits (the nought
excluded) into two groups so that one group when divided by the other produces a given number without remainder. For example, 1 3 4 5 8 divided by 6 7 2 9 gives 2. Can the reader find similar arrangements producing 3, 4, 5, 6, 7, 8, and 9 respectively? Also, can he find the pairs of smallest possible numbers in each case? Thus, 1 4 6 5 8 divided by 7 3 2 9 is just as correct for 2 as the other example we have given, but the numbers are higher. 89.--ADDING THE DIGITS. If I write the sum of money, £987, 5s. 4½d., and add up the digits, they sum to 36. No digit has thus been used a second time in the amount or addition. This is the largest amount possible under the conditions. Now find the smallest possible amount, pounds, shillings, pence, and farthings being all represented. You need not use more of the nine digits than you choose, but no digit may be repeated throughout. The nought is not allowed. 90.--THE CENTURY PUZZLE. Can you write 100 in the form of a mixed number, using all the nine digits once, and only once? The late distinguished French mathematician, Edouard Lucas, found seven different ways of doing it, and expressed his doubts as to there being any other ways. As a matter of fact there are just eleven ways and no more. Here is one of them, 91+5742/638. Nine of the other ways have similarly two figures in the integral part of the number, but the eleventh expression has only one figure there. Can the |
|