Half-hours with the Telescope - Being a Popular Guide to the Use of the Telescope as a - Means of Amusement and Instruction. by Richard Anthony Proctor
page 24 of 115 (20%)
page 24 of 115 (20%)
|
respectively. The weight _w_ serves to counterpoise the telescope, and
the screws _s_, _s_, _s_, _s_, serve to adjust the instrument so that the polar axis shall be in its proper position. The advantage gained by the equatorial method of mounting is that only one motion is required to follow a star. Owing to the diurnal rotation of the earth, the stars appear to move uniformly in circles parallel to the celestial equator; and it is clear that a star so moving will be kept in the field of view, if the telescope, once directed to the star, be made to revolve uniformly and at a proper rate round the polar axis. [Illustration: _Fig. 9._] The equatorial can be directed by means of the circles _c_ and _d_ to any celestial object whose right ascension and declination are known. On the other hand, to bring an object into the field of view of an alt-azimuth, it is necessary, either that the object itself should be visible to the naked eye, or else that the position of the object should be pretty accurately learned from star-maps, so that it may be picked up by the alt-azimuth after a little searching. A small telescope called a _finder_ is usually attached to all powerful telescopes intended for general observation. The finder has a large field of view, and is adjusted so as to have its axis parallel to that of the large telescope. Thus a star brought to the centre of the large field of the finder (indicated by the intersection of two lines placed at the focus of the eye-glass) is at, or very near, the centre of the small field of the large telescope. If a telescope has no finder, it will be easy for the student to construct one for himself, and will be a useful exercise in optics. Two convex lenses not very different in size from those shown in fig. 1, and |
|