Scientific American Supplement, No. 508, September 26, 1885 by Various
page 74 of 137 (54%)
page 74 of 137 (54%)
![]() | ![]() |
|
the observed temperature of the exhaust gases was 1,229°. The fraction
then becomes (3443 - 1229)/3443 = 64 per cent. If we multiply this by 0.37, as we did in the case of the steam-engine, we get 23.7 per cent., or approximately the same as that arrived at by direct experience. Indeed, if the consumption is, as sometimes stated, less than 18 feet, the two percentages would be exactly the same. I do not put this forward as scientifically true; but the coincidence is at least striking. I have spoken of the illuminating power of the gas as of importance; for the richer gases have also more calorific power, and an engine would, of course, require a smaller quantity of them. The heat-giving power does not, however, vary as the illuminating power, but at a much slower rate; and, adopting the same contrivance as that on which the absolute scale of temperature is formed, I would suggest a formula of the following type: H = C (I + K), in which H represents the number of heat-units given out by the combustion of 1 cubic foot of gas, I is the illuminating power in candles, and C and K two constants to be determined by experiment. If we take the value for motive power of the different qualities of gas as given in Mr. Charles Hunt's interesting paper in our Transactions for 1882, C might without any great error be taken as 22 and K as 7.5. With Pintsch's oil gas, however, as compared with coal gas, this formula does not hold; and C should be taken much lower, and K much higher than the figures given above. That is to say, the heating power increases in a slower progression. The data available, however, are few; but I trust that Mr. Hartley will on this, as he has done on so many other scientific subjects, come to our aid. I will now refer to the valuable experiments of Messrs. Brooks and |
|