Pressure, Resistance, and Stability of Earth - American Society of Civil Engineers: Transactions, Paper No. 1174, - Volume LXX, December 1910 by J. C. Meem
page 6 of 92 (06%)
page 6 of 92 (06%)
|
2 × (_l_ / 2) tan. [alpha] × _W_
_W_{1}_ = ---------------------------------- = 2 1 / 1 \ --- _l_ tan. { --- (90° - [phi]) + [phi] } _W_ = 2 \ 2 / _l_ [phi] ----- tan. ( 45° + ------- ) _W_. 2 2 The application of the above to flat-arched or circular tunnels is very simple, except that the question of side thrust should be considered also as a factor. The thrust against the side of a tunnel in dry sand having a flat angle of repose will necessarily be greater than in very moist sand or clay, which stands at a much steeper angle, and, for the same reason, the arch thrust is greater in dryer sand and therefore the load on a tunnel structure should not be as great, the material being compact and excluding cohesion as a factor. This can be illustrated by referring to Fig. 3 in which it is seen that the flatter the position of the "rakers" keying at _W_{1}_, _W_{2}_, and _W_, the greater will be the side thrust at _A_, _C_, and _F_. It can also be illustrated by assuming that the arching material is composed of cubes of polished marble set one vertically above the other in close columns. There would then be absolutely no side thrust, but, likewise, no arching properties would be developed, and an indefinite height would probably be reached above the tunnel roof before friction enough would be developed to cause it to relieve the structure of any part of its load. Conversely, if it be assumed that the superadjacent material is composed of large bowling balls, interlocking with some degree of regularity, it can be seen that |
|