Pressure, Resistance, and Stability of Earth - American Society of Civil Engineers: Transactions, Paper No. 1174, - Volume LXX, December 1910 by J. C. Meem
page 73 of 92 (79%)
page 73 of 92 (79%)
|
It has been the practice lately, among some engineers in Boston, as well as in New York City, to assume that water pressures on the underside of inverts is exerted on one-half the area only. The writer, however, has made it a practice first to lay a few inches of cracked stone on the bottom of wet excavations in order to keep water from concrete which is to be placed in the invert. In addition to the cracked stone under the inverts, shallow trenches dug laterally across the excavation to insure more perfect drainage, have been observed. Both these factors no doubt assist the free course of water in exerting pressure on the finished invert after the underdrains have been closed up on completion of the work. The writer, therefore, awaits with interest the repetition of Experiment No. 6, with water on the bottom of a piston buried in coarse gravel or cracked stone. As for the arching effect of sand, the writer believes that Mr. Meem has demonstrated an important principle, on a small scale. It must be regretted, however, that the box was not made larger, for, to the writer, it appears unsafe to draw such sweeping conclusions from small experiments. As small models of sailboats fail to develop completely laws for the design and control of large racing yachts, so experiments in small sand boxes may fail to demonstrate the laws governing actual pressures on full-sized structures. For some time the writer has been using a process of reasoning similar to that of the author for assumptions of earth pressure on the roofs of tunnel arches, except that the vertical forces assumed to hold up the weight of the earth have been ascribed to cohesion and friction, along what might be termed the sides of the "trench excavation." |
|