Scientific American Supplement, No. 611, September 17, 1887 by Various
page 83 of 143 (58%)
page 83 of 143 (58%)
![]() | ![]() |
|
water, until the washings cease to become opalescent with a soluble
chloride. Now dissolve the pure urate by washing it through the filter with a few cubic centimeters of the special nitric acid. The process is carried out thus: Add to the liquid in the beaker a few drops of the ferric-alum solution to act as an indicator, and from a burette carefully drop in centinormal ammonic thiocyanate until a permanent red coloration of ferric thiocyanate barely appears. The number of cubic centimeters used of the thiocyanate solution multiplied by 0.00168 gives the amount of uric acid in the 25 c.c. One milligramme may be added to compensate for loss, and the whole multiplied by four gives the percentage of uric acid in the urine. The whole process depends on the fact that argentic urate fails to dissolve in ammonia, but is soluble in nitric acid, and is thus easily obtained in the pure state. By determining the amount of combined silver, the percentage of uric acid can readily be calculated. The addition of sodic bicarbonate prevents the otherwise inevitable reduction of the silver salt. BILE. In diseases affecting the liver, the urine frequently becomes contaminated with biliary constituents. If the coloring matter of bile is present (_bilirubin_, etc.), the liquid is darkened considerably in tint, and may assume various shades of brown or green. Should the color be decided, the fluid will be found to foam strongly on shaking, and white blotting-paper will be stained by it yellow or greenish. These characters point to the presence of bile in fair quantity, and it is only necessary to apply a single confirmatory test. Allow some of the urine to flow carefully, according to Heller's method, over a couple of drachms of yellow nitric acid (i.e., acid containing traces |
|