An Elementary Course in Synthetic Projective Geometry by Derrick Norman Lehmer
page 24 of 156 (15%)
page 24 of 156 (15%)
|
1. Since there is a threefold infinity of points in space, there must be a
sixfold infinity of pairs of points in space. Each pair of points determines a line. Why, then, is there not a sixfold infinity of lines in space? 2. If there is a fourfold infinity of lines in space, why is it that there is not a fourfold infinity of planes through a point, seeing that each line in space determines a plane through that point? 3. Show that there is a fourfold infinity of circles in space that pass through a fixed point. (Set up a one-to-one correspondence between the axes of the circles and lines in space.) 4. Find the order of infinity of all the lines of space that cut across a given line; across two given lines; across three given lines; across four given lines. 5. Find the order of infinity of all the spheres in space that pass through a given point; through two given points; through three given points; through four given points. 6. Find the order of infinity of all the circles on a sphere; of all the circles on a sphere that pass through a fixed point; through two fixed points; through three fixed points; of all the circles in space; of all the circles that cut across a given line. 7. Find the order of infinity of all lines tangent to a sphere; of all planes tangent to a sphere; of lines and planes tangent to a sphere and passing through a fixed point. |
|