An Elementary Course in Synthetic Projective Geometry by Derrick Norman Lehmer
page 62 of 156 (39%)
page 62 of 156 (39%)
![]() | ![]() |
|
construct the conic. ("To construct the conic" means here to construct as
many other points as may be desired.) 6. Given three points on the conic, and the tangent at two of them, to construct the conic. 7. Given five points, two of which are at infinity in different directions, to construct the conic. (In this, and in the following examples, the student is supposed to be able to draw a line parallel to a given line.) 8. Given four points on a conic (two of which are at infinity and two in the finite part of the plane), together with the tangent at one of the finite points, to construct the conic. 9. The tangents to a curve at its infinitely distant points are called its _asymptotes_ if they pass through a finite part of the plane. Given the asymptotes and a finite point of a conic, to construct the conic. 10. Given an asymptote and three finite points on the conic, to determine the conic. 11. Given four points, one of which is at infinity, and given also that the line at infinity is a tangent line, to construct the conic. CHAPTER V - PENCILS OF RAYS OF THE SECOND ORDER |
|