Watch and Clock Escapements - A Complete Study in Theory and Practice of the Lever, Cylinder and Chronometer Escapements, Together with a Brief Account of the Origin and Evolution of the Escapement in Horology by Anonymous
page 15 of 243 (06%)
page 15 of 243 (06%)
![]() | ![]() |
|
one eighth the size of our large drawing; and when we wish to show some
portion of such drawing on a larger scale we will designate such enlargement by saying one-fourth, one-half or full size. [Illustration: Fig. 9] At Fig. 9 we show at half size that portion of our escapement embraced by the dotted lines _d_, Fig. 10. This plan enables us to show very minutely such parts as we have under consideration, and yet occupy but little space. The arc _a_, Fig. 9, represents the periphery of the escape wheel. On this line, ten and one-half degrees from the point of the tooth _A_, we establish the point _c_ and draw the radial line _c c'_. It is to be borne in mind that the arc embraced between the points _b_ and _c_ represents the duration of contact between the tooth _A_ and the entrance pallet of the lever. The space or short arc _c n_ represents the "drop" of the tooth. This arc of one and one-half degrees of escape-wheel movement is a complete loss of six and one-fourth per cent. of the entire power of the mainspring, as brought down to the escapement; still, up to the present time, no remedy has been devised to overcome it. All the other escapements, including the chronometer, duplex and cylinder, are quite as wasteful of power, if not more so. It is usual to construct ratchet-tooth pallets so as to utilize but ten degrees of escape-wheel action; but we shall show that half a degree more can be utilized by adopting the eight and one-half degree fork action and employing a double-roller safety action to prevent over-banking. [Illustration: Fig. 10] |
|