Watch and Clock Escapements - A Complete Study in Theory and Practice of the Lever, Cylinder and Chronometer Escapements, Together with a Brief Account of the Origin and Evolution of the Escapement in Horology by Anonymous
page 37 of 243 (15%)
page 37 of 243 (15%)
![]() | ![]() |
|
rights; but otherwise we can look and squint, open and close the
bankings, and tinker about till doomsday, and the watch be none the better. CLUB-TOOTH LEVER WITH EQUIDISTANT LOCKING FACES. In drawing a club-tooth lever escapement with equidistant locking, we commence, as on former occasions, by producing the vertical line _A k_, Fig. 22, and establishing the center of the escape wheel at _A_, and with the dividers set at 5" sweep the pitch circle _a_. On each side of the intersection of the vertical line _A k_ with the arc _a_ we set off thirty degrees on said arc, and through the points so established draw the radial lines _A b_ and _A c_. From the intersection of the radial line _A b_ with the arc _a_ lay off three and a half degrees to the left of said intersection on the arc _a_, and through the point so established draw the radial line _A e_. From the intersection of the radial line _A b_ with the arc _a_ erect the perpendicular line _f_, and at the crossing or intersection of said line with the vertical line _A k_ establish the center of the pallet staff, as indicated by the small circle _B_. From _B_ as a center sweep the short arc _l_ with a 5" radius; and from the intersection of the radial line _A b_ with the arc _a_ continue the line _f_ until it crosses the short arc _l_, as shown at _f'_. Lay off one and a half degrees on the arc _l_ below its intersection with the line _f'_, and from _B_ as a center draw the line _B_ _i_ through said intersection. From _B_ as a center, through the intersection of the radial line _A b_ and the arc _a_, sweep the arc _g_. |
|