Watch and Clock Escapements - A Complete Study in Theory and Practice of the Lever, Cylinder and Chronometer Escapements, Together with a Brief Account of the Origin and Evolution of the Escapement in Horology by Anonymous
page 48 of 243 (19%)
page 48 of 243 (19%)
![]() | ![]() |
|
phosphorus glass used by optical instrument makers which is intensely
hard, and if colored ruby-red makes a beautiful pallet jewel, which will afford as much service as if real stones were used; they are no cheaper than carnelian pallets, but much richer looking. The prettiest cap for the balance is one of those foilback stones in imitation of a rose-cut diamond. [Illustration: Fig. 30] [Illustration: Fig. 31] In turning the staffs it is the best plan to use double centers, but a piece of Stubs steel wire that will go into a No. 40 wire chuck, will answer; in case such wire is used, a brass collet must be provided. This will be understood by inspecting Fig. 30, where _L_ represents the Stubs wire and _B N_ the brass collet, with the balance seat shown at _k_. The escape-wheel arbor and pallet staff can be made in the same way. The lower end of the escape wheel pivot is made about ΒΌ" long, so that a short piece of brass wire can be screwed upon it, as shown in Fig. 31, where _h_ represents the pivot, _A_ the lower plate, and the dotted line at _p_ the brass piece screwed on the end of the pivot. This piece _p_ is simply a short bit of brass wire with a female screw tapped into the end, which screws on to the pivot. An arm is attached to _p_, as shown at _T_. The idea is, the pieces _T p_ act like a lathe dog to convey the power from one of the pivots of an old eight-day spring clock movement, which is secured by screws to the lower side of the main plate _A_. The plan is illustrated at Fig. 32, where _l_ represents pivot of the eight-day clock employed to run the model. Counting the escape-wheel pivot of the clock as one, we take the third pivot from this in the clock train, placing the movement so this point comes opposite the |
|