Watch and Clock Escapements - A Complete Study in Theory and Practice of the Lever, Cylinder and Chronometer Escapements, Together with a Brief Account of the Origin and Evolution of the Escapement in Horology by Anonymous
page 67 of 243 (27%)
page 67 of 243 (27%)
![]() | ![]() |
|
educate the eye to discriminate not only as to correct actions, but also
to detect those which are imperfect, and we believe most watchmakers will admit that in many instances it takes much longer to locate a fault than to remedy it after it has been found. [Illustration: Fig. 55] Let us now proceed to delineate a fork and roller. It is not imperative that we should draw the parts to any scale, but it is a rule among English makers to let the distance between the center of the pallet staff and the center of the balance staff equal in length the chord of ninety-six degrees of the pitch circle of the escape wheel, which, in case we employ a pitch circle of 5" radius, would make the distance between _A_ and _B_, Fig. 55, approximately 7½", which is a very fair scale for study drawings. HOW TO DELINEATE A FORK AND ROLLER. To arrive at the proper proportions of the several parts, we divide the space _A B_ into four equal parts, as previously directed, and draw the circle _a_ and short arc _b_. With our dividers set at 5", from _B_ as a center we sweep the short arc _c_. From our arc of sixty degrees, with a 5" radius, we take five degrees, and from the intersection of the right line _A B_ with the arc _c_ we lay off on each side five degrees and establish the points _d e_; and from _B_ as a center, through these points draw the lines _B d'_ and _B e'_. Now the arc embraced between these lines represents the angular extent of our fork action. From _A_ as a center and with our dividers set at 5", we sweep the arc |
|