Watch and Clock Escapements - A Complete Study in Theory and Practice of the Lever, Cylinder and Chronometer Escapements, Together with a Brief Account of the Origin and Evolution of the Escapement in Horology by Anonymous
page 72 of 243 (29%)
page 72 of 243 (29%)
![]() | ![]() |
|
have made an end of this question. The function performed by the outer
face of the prong of a fork is to prevent the engaged pallet from unlocking while the guard pin is opposite to the passing hollow. The inner angle _s_ of the horn of the fork must be so shaped and located that the jewel pin will just clear it as it passes out of the fork, or when it passes into the fork in the act of unlocking the escapement. In escapements with solid bankings a trifle is allowed, that is, the fork is made enough shorter than the absolute theoretical length to allow for safety in this respect. THE PROPER LENGTH OF A LEVER. We will now see how long a lever must be to perform its functions perfectly. Now let us determine at what point on the inner face of the prong _E'_ the jewel pin parts from the fork, or engages on its return. To do this we draw a line from the center _r_ (Fig. 59) of the jewel pin, so as to meet the line _e_ at right angles, and the point _t_ so established on the line _e_ is where contact will take place between the jewel pin and fork. It will be seen this point (_t_) of contact is some distance back of the angle _u_ which terminates the inner face of the prong _E'_; consequently, it will be seen the prongs _E E'_ of the fork can with safety be shortened enough to afford a safe ingress or egress to the jewel pin to the slot in the fork. As regards the length of the outer face of the prong of the fork, a good rule is to make it one and a half times the diameter of the jewel pin. The depth of the slot need be no more than to free the jewel in its passage across the ten degrees of |
|