Book-bot.com - read famous books online for free

History of Science, a — Volume 1 by Henry Smith Williams;Edward Huntington Williams
page 37 of 297 (12%)
that day coinciding, as already noted, with the summer solstice
and with the beginning of the Nile flow.

But now for the difficulties introduced by that unreckoned
quarter of a day. Obviously with a calendar of 365 days only, at
the end of four years, the calendar year, or vague year, as the
Egyptians came to call it, had gained by one full day upon the
actual solar year-- that is to say, the heliacal rising of
Sothis, the dog- star, would not occur on new year's day of the
faulty calendar, but a day later. And with each succeeding period
of four years the day of heliacal rising, which marked the true
beginning of the year--and which still, of course, coincided with
the inundation--would have fallen another day behind the
calendar. In the course of 120 years an entire month would be
lost; and in 480 years so great would become the shifting that
the seasons would be altogether misplaced; the actual time of
inundations corresponding with what the calendar registered as
the seed-time, and the actual seed-time in turn corresponding
with the harvest-time of the calendar.

At first thought this seems very awkward and confusing, but in
all probability the effects were by no means so much so in actual
practice. We need go no farther than to our own experience to
know that the names of seasons, as of months and days, come to
have in the minds of most of us a purely conventional
significance. Few of us stop to give a thought to the meaning of
the words January, February, etc., except as they connote certain
climatic conditions. If, then, our own calendar were so defective
that in the course of 120 years the month of February had shifted
back to occupy the position of the original January, the change
DigitalOcean Referral Badge