History of Science, a — Volume 4 by Henry Smith Williams;Edward Huntington Williams
page 20 of 296 (06%)
page 20 of 296 (06%)
|
filled with quicksilver, and kept inverted in a basin of the same
.... With this apparatus, after a variety of experiments .... on the 1st of August, 1774, I endeavored to extract air from mercurius calcinatus per se; and I presently found that, by means of this lens, air was expelled from it very readily. Having got about three or four times as much as the bulk of my materials, I admitted water to it, and found that it was not imbibed by it. But what surprised me more than I can express was that a candle burned in this air with a remarkably vigorous flame, very much like that enlarged flame with which a candle burns in nitrous oxide, exposed to iron or liver of sulphur; but as I had got nothing like this remarkable appearance from any kind of air besides this particular modification of vitrous air, and I knew no vitrous acid was used in the preparation of mercurius calcinatus, I was utterly at a loss to account for it."[4] The "new air" was, of course, oxygen. Priestley at once proceeded to examine it by a long series of careful experiments, in which, as will be seen, he discovered most of the remarkable qualities of this gas. Continuing his description of these experiments, he says: "The flame of the candle, besides being larger, burned with more splendor and heat than in that species of nitrous air; and a piece of red-hot wood sparkled in it, exactly like paper dipped in a solution of nitre, and it consumed very fast; an experiment that I had never thought of trying with dephlogisticated nitrous air. |
|