History of Science, a — Volume 4 by Henry Smith Williams;Edward Huntington Williams
page 65 of 296 (21%)
page 65 of 296 (21%)
![]() | ![]() |
|
serially in the numerical order of their atomic weights, there is
a curious recurrence of similar properties at intervals of eight elements This so-called "law of octaves" attracted little immediate attention, but the facts it connotes soon came under the observation of other chemists, notably of Professors Gustav Hinrichs in America, Dmitri Mendeleeff in Russia, and Lothar Meyer in Germany. Mendeleeff gave the discovery fullest expression, explicating it in 1869, under the title of "the periodic law." Though this early exposition of what has since been admitted to be a most important discovery was very fully outlined, the generality of chemists gave it little heed till a decade or so later, when three new elements, gallium, scandium, and germanium, were discovered, which, on being analyzed, were quite unexpectedly found to fit into three gaps which Mendeleeff had left in his periodic scale. In effect the periodic law had enabled Mendeleeff to predicate the existence of the new elements years before they were discovered. Surely a system that leads to such results is no mere vagary. So very soon the periodic law took its place as one of the most important generalizations of chemical science. This law of periodicity was put forward as an expression of observed relations independent of hypothesis; but of course the theoretical bearings of these facts could not be overlooked. As Professor J. H. Gladstone has said, it forces upon us "the conviction that the elements are not separate bodies created without reference to one another, but that they have been originally fashioned, or have been built up, from one another, |
|