History of Science, a — Volume 4 by Henry Smith Williams;Edward Huntington Williams
page 67 of 296 (22%)
page 67 of 296 (22%)
![]() | ![]() |
|
only that sufficient light came from it. The experiments it
recorded might be performed in the sun, or in the most distant stars or nebulae; indeed, one of the earliest feats of the instrument was to wrench from the sun the secret of his chemical constitution. To render the utility of the spectroscope complete, however, it was necessary to link with it another new chemical agency--namely, photography. This now familiar process is based on the property of light to decompose certain unstable compounds of silver, and thus alter their chemical composition. Davy and Wedgwood barely escaped the discovery of the value of the photographic method early in the nineteenth century. Their successors quite overlooked it until about 1826, when Louis J. M. Daguerre, the French chemist, took the matter in hand, and after many years of experimentation brought it to relative perfection in 1839, in which year the famous daguerreotype first brought the matter to popular attention. In the same year Mr. Fox Talbot read a paper on the subject before the Royal Society, and soon afterwards the efforts of Herschel and numerous other natural philosophers contributed to the advancement of the new method. In 1843 Dr. John W. Draper, the famous English-American chemist and physiologist, showed that by photography the Fraunhofer lines in the solar spectrum might be mapped with absolute accuracy; also proving that the silvered film revealed many lines invisible to the unaided eye. The value of this method of observation was recognized at once, and, as soon as the spectroscope was perfected, the photographic method, in conjunction with its use, became invaluable to the chemist. By this means comparisons of |
|