Creative Chemistry - Descriptive of Recent Achievements in the Chemical Industries by Edwin E. Slosson
page 77 of 299 (25%)
page 77 of 299 (25%)
![]() | ![]() |
|
|
Coal-tar --> 10 crudes --> 300 intermediates --> 900 dyes --> 5000 brands.
Or, to borrow the neat simile used by Dr. Bernhard C. Hesse, it is like cloth-making where "ten fibers make 300 yarns which are woven into 900 patterns." The advantage of the artificial dyestuffs over those found in nature lies in their variety and adaptability. Practically any desired tint or shade can be made for any particular fabric. If my lady wants a new kind of green for her stockings or her hair she can have it. Candies and jellies and drinks can be made more attractive and therefore more appetizing by varied colors. Easter eggs and Easter bonnets take on new and brighter hues. More and more the chemist is becoming the architect of his own fortunes. He does not make discoveries by picking up a beaker and pouring into it a little from each bottle on the shelf to see what happens. He generally knows what he is after, and he generally gets it, although he is still often baffled and occasionally happens on something quite unexpected and perhaps more valuable than what he was looking for. Columbus was looking for India when he ran into an obstacle that proved to be America. William Henry Perkin was looking for quinine when he blundered into that rich and undiscovered country, the aniline dyes. William Henry was a queer boy. He had rather listen to a chemistry lecture than eat. When he was attending the City of London School at the age of thirteen there was an extra course of lectures on chemistry given at the noon recess, so he skipped his lunch to take them in. Hearing that a German chemist named Hofmann had opened a laboratory in the Royal College of London he headed for that. Hofmann obviously had no fear of forcing the young intellect prematurely. He perhaps had never heard that "the tender petals of the |
|


