Scientific American Supplement, No. 633, February 18, 1888 by Various
page 27 of 135 (20%)
page 27 of 135 (20%)
|
beyond admissible limits, thereby causing the resistance of the gun to
be less than that prescribed.[4] [Footnote 4: When the inner tube is strengthened by means of wire, the initial or natural stresses in the latter may be neglected on account of its thinness; but when the thickness of the hoops is reduced, and the number of layers thereby increased, then the value of the initial stresses in these hoops is a very important factor with respect to the decrease or increase Of the powers of resistance of the gun.] It is evident, from what has been said, that in order to determine precisely the resistance of hollow cylinders to internal pressures, and to make the correct calculations for hooping tubes, it is absolutely necessary to know whether internal initial stresses exist in the tube and in the hoops, and to ascertain what their nature and intensity may be--that is to say, whether they are useful or detrimental; yet it is incontestable that in the construction of modern ordnance no attention has been paid to the investigations indicated. If it be possible to ignore these considerations in the manufacture of guns of small caliber, and where the thickness of metal is not sufficiently great to admit of strongly developed internal stresses, such is by no means the case with the colossal and costly weapons of the present day. In these the thickness of metal in the tube and hoops is very great; hence the extreme probability of very considerable internal stresses developing themselves. That the strength of large guns is often far below that anticipated is demonstrated, year by year, by the repeated cases of failure. Consciousness as to the want of strength in such guns is made evident by the precautionary measures as to their use everywhere adopted. The heavy artillery produced in the gun factories of Europe is |
|