Scientific American Supplement, No. 633, February 18, 1888 by Various
page 75 of 135 (55%)
page 75 of 135 (55%)
![]() | ![]() |
|
is seven eighths strength. One portion of this liquid passes to 4, and
we have one and seven eighths portions of sugar in two portions of liquid, or the liquid becomes 15/16 strength. One portion of this liquid passes to 5, and we have in 5 one and fifteen sixteenths portions of sugar in two portions of liquid, or the liquid is 31/32 strength. It is now called _juice_. From this time forward a cell is emptied for every one filled. Throughout the operation, the temperature is kept as near the boiling point as can be done conveniently without danger of filling some of the cells with steam. Diffusion takes place more rapidly at high than at low temperatures, and the danger of fermentation, with the consequent loss of sugar, is avoided. WHAT HAS HAPPENED TO THE CHIPS. By the first action of water in 1, ½ of the sugar was left in cell 1; by the second ¼ was left, by the third 1/8 was left, by the fourth 1/16 was left, by the fifth 1/32 was left, by the sixth 1/64 was left, by the seventh 1/128 was left, by the eighth 1/256 was left, by the ninth 1/512 was left. The fractions representing the strength of the juice on the one hand and the sugar left in each cell on the other hand, after the battery is fully in operation, are not so readily deduced. The theory is easily understood, however, although the computation is somewhat intricate. Those who desire to follow the process by mathematical formula are referred to pages 9 and 10, Bulletin No. 2, Chemical Division U.S. Department of Agriculture, where will be found the formula furnished by Professor Harkness, of the U.S. Naval Observatory. |
|