Piano Tuning - A Simple and Accurate Method for Amateurs by J. Cree (Jerry Cree) Fischer
page 115 of 160 (71%)
page 115 of 160 (71%)
![]() | ![]() |
|
other words, the terms, "vibration" and "sound-wave," are synonymous.
If two strings, tuned to give forth the same number of vibrations per second, are struck at the same time, the tone produced will appear to come from a single source; one sweet, continuous, smooth, musical tone. The reason is this: The condensations sent forth from each of the two strings occur exactly together; the rarefactions, which, of course, alternate with the condensations, are also simultaneous. It necessarily follows, therefore, that the condensations from each of the two strings travel with the same velocity. Now, while this condition prevails, it is evident that the two strings assist each other, making the condensations more condensed, and, consequently, the rarefactions more rarefied, the result of which is, the two allied forces combine to strengthen the tone. In opposition to the above, if two strings, tuned to produce the same tone, could be so struck that the condensation of one would occur at the same instant with the rarefaction of the other, it is readily seen that the two forces would oppose, or counteract each other, which, if equal, would result in absolute silence.[G] [G] When the bushing of the center-pin of the hammer butt becomes badly worn or the hammer-flange becomes loose, or the condition of the hammer or flange becomes so impaired that the hammer has too much play, it may so strike the strings as to tend to produce the phenomenon described in the above paragraph. When in such a condition, one side of the hammer may strike in advance of the other just enough to throw the vibrations in opposition. Once you may get a strong tone, and again you strike with the same force and hear but a faint, almost inaudible sound. For this reason, as well as that of |
|