Piano Tuning - A Simple and Accurate Method for Amateurs by J. Cree (Jerry Cree) Fischer
page 81 of 160 (50%)
page 81 of 160 (50%)
![]() | ![]() |
|
Now, as a matter of fact, in a scale which is equally tempered, no two fifths beat exactly alike, as the lower a fifth, the slower it should beat, and thus the fifths in the bass are hardly perceptibly flat, while those in the treble beat more rapidly. For example, if a certain fifth beat once a second, the fifth an octave higher will beat twice a second, and one that is two octaves higher will beat four times a second, and so on, doubling the number of beats with each ascending octave. In a subsequent lesson, in which we give the mathematics of the temperament, these various ratios will be found accurately figured out; but for the present let us notice the difference between the actual tempered scale and the exact mathematical scale in the point of the flattening of the fifth. Take for example 1C, and for convenience of figuring, say it vibrates 128 per second. The relation of a fundamental to its fifth is that of 2 to 3. So if 128 is represented as 2, we think of it as 2 times 64. Then with another 64 added, we have 192, which represents 3. In other words, a fundamental has just two-thirds of the number of vibrations per second that its fifth has, in the exact scale. This would mean a fifth in which there would be no beats. Now in the tempered scale we find that G vibrates 191.78 instead of 192; so we can easily see how much variation from the mathematical standard there is in this portion of the instrument. It is only about a fourth of a vibration. This would mean that, in this fifth we would hear the beats a little slower than one per second. Take the same fifth an octave higher and take 2C as fundamental, which has 256 for its vibration number. The G, fifth above, should vibrate 384, but in the tempered scale it beats but 383.57, almost half a vibration flat. This would give nearly 2 beats in 3 seconds. |
|