Scientific American Supplement, No. 1178, June 25, 1898 by Various
page 98 of 120 (81%)
page 98 of 120 (81%)
![]() | ![]() |
|
|
erected sufficient for the needs of the entire region. This lock is
situated at Henrichenburg, near Dortmund, and our illustration pictures it with its lock-chamber half raised. The lock, which serves to overcome a difference in level of fifty-nine feet, raises vessels of 1,000 tons capacity with a velocity of 0.3 to 0.7 foot per second, and has been constructed after a new and astonishingly simple system. The lock chamber, designed for the reception of the various vessels, is 229.60 feet in length and 28.864 feet in breadth and normally contains 8.2 feet of water. Under the sluice in a line with the long axis are five wells filled with water in which cylindrical floats are placed, connected to the bottom of the chamber by means of iron trellis-work. The floats are placed so deeply that, in their highest position, their upper edges are always submerged; they are, moreover, of such size that by means of their upward impulsion the chamber is held in equilibrium. Irrespective of the small differences of pressure which arise from the varying immersion of the framework, the lock will in all positions be in equilibrium. Since a vessel which enters the lock displaces a volume of water whose weight is equal to the weight of the vessel, a constant equilibrium will always be maintained and only a minimum force required to raise or lower the chamber. In order to move the lock-chamber up and down and to sustain it constantly in a horizontal position, nuts have been fixed to strong crossbeams, through which powerful screw-rods work. These rods are held in place by a massive framework of iron and are turned to the left or to the right by means of a small steam engine, placed at one side of the lock, which engine, by means of a |
|


