Transactions of the American Society of Civil Engineers, vol. LXVIII, Sept. 1910 - The Site of the Terminal Station. Paper No. 1157 by George C. Clarke
page 12 of 73 (16%)
page 12 of 73 (16%)
|
(or wall produced) at the top of rail parallel to the center line,
and to vary the batter accordingly, using the 2-in. batter previously mentioned as the minimum. This gave a maximum batter of 3 in. per ft. The variation is so gradual that it is unnoticeable, and is not sufficient to introduce any complications in construction. The wall was designed with a stepped back, primarily to allow the water-proofing and brick protection to be held in position more readily. The first step was put at 13 ft. below the surface of the ground. This gave a vertical back above that point for a 3-in. battered face, and a slightly battered back for sections having a less batter in front. Below that point a step was added for each 5 ft. of depth to the elevation of the top of rail, or to the foundation of the wall if above that elevation. As the horizontal distance of the heel of the wall, at its greatest width, from its face at the top of rail would determine the effective room to be occupied by the wall, it was determined to make the back vertical below the top of rail and gain the necessary increase in width below that point by making a heavy batter on the face. The type of wall having been thus determined, calculations were made of the width of base required for each ΒΌ-in. batter from 2 to 3 in., inclusive, first for a depth of 13 ft. below the top of the curb and then for each 5 ft. below that elevation, to a depth corresponding to the distance between the top of the curb and the top of the rail at the point of greatest variation. These widths of wall were determined for the two pressures previously decided on, and curves were then plotted showing the thickness of wall required for each batter calculated and for each pressure. They are shown on Plate LIV. The curves in broken lines represent the widths required for saturated material, and the curves in dotted lines for hydraulic pressure. Mean curves were then |
|