Logic - Deductive and Inductive by Carveth Read
page 82 of 478 (17%)
page 82 of 478 (17%)
![]() | ![]() |
|
conditional). Similarly, we might write: _Proof of Joe Smith's not being
a prophet is a proof of his being an impostor_. This turning of Conditionals into Categoricals is called a Change of Relation; and the process may be reversed: _All the wise are virtuous_ may be written, _If any man is wise he is virtuous_; or, again, _Either a man is not-wise or he is virtuous_. But the categorical form is usually the simplest. If, then, as substitutes for the corresponding conditionals, categoricals are formally adequate, though sometimes inelegant, it may be urged that Logic has nothing to do with elegance; or that, at any rate, the chief elegance of science is economy, and that therefore, for scientific purposes, whatever we may write further about conditionals must be an ugly excrescence. The scientific purpose of Logic is to assign the conditions of proof. Can we, then, in the conditional form prove anything that cannot be proved in the categorical? Or does a conditional require to be itself proved by any method not applicable to the Categorical? If not, why go on with the discussion of Conditionals? For all laws of Nature, however stated, are essentially categorical. 'If a straight line falls on another straight line, the adjacent angles are together equal to two right angles'; 'If a body is unsupported, it falls'; 'If population increases, rents tend to rise': here 'if' means 'whenever' or 'all cases in which'; for to raise a doubt whether a straight line is ever conceived to fall upon another, whether bodies are ever unsupported, or population ever increases, is a superfluity of scepticism; and plainly the hypothetical form has nothing to do with the proof of such propositions, nor with inference from them. Still, the disjunctive form is necessary in setting out the relation of |
|