Transactions of the American Society of Civil Engineers, vol. LXX, Dec. 1910 - Federal Investigations of Mine Accidents, Structural - Materials and Fuels. Paper No. 1171 by Herbert M. Wilson
page 50 of 187 (26%)
page 50 of 187 (26%)
|
to an amount equivalent to that produced by 10 grammes of standard 40%
nitro-glycerine dynamite stemmed with 50 grammes of dry sand under standard conditions as produced with the tamping device. The results of this test, when compared with those of the Bichel gauge, indicate that, for explosives of high detonation, the lead block is quite accurate, but for slow explosives, such as gunpowder, the expansion of the gases is not fast enough to make comparative results of value. The reason for this is that the gases escape through the bore of the block rather than take effect in expanding the bore-hole. The lead blocks are cylindrical, 200 mm. in diameter, and 200 mm. high. Each has a central cavity, 25 mm. in diameter and 125 mm. deep (Fig. 1, Plate IX), in which the charge is placed. The blocks are made of desilverized lead of the best quality, and, as nearly as possible, under identical conditions. The charge is placed in the cavity and prepared for detonation with an electrical exploder and stemming. After the explosion the bore-hole is pear-shaped, the size of the cavity depending, not only on the disruptive power of the explosive, but also on its rate of detonation, as already indicated. The size of the bore-hole is measured by filling the cavity with water from a burette. The difference in the capacity of the cavity before and after detonation indicates the enlarging power of the explosive. _Calorimeter._--The explosion calorimeter is designed to measure the amount of heat given off by the detonation of explosive charges of 100 grammes. The apparatus consists of the calorimeter bomb (Fig. 1, Plate VIII), the inner receiver or immersion vessel, a wooden tub, a registering thermometer, and a rocking frame. This piece of apparatus stands on the east side of Building No. 17. |
|