Outlines of the Earth's History - A Popular Study in Physiography by Nathaniel Southgate Shaler
page 43 of 476 (09%)
page 43 of 476 (09%)
![]() | ![]() |
|
hereafter note with more detail, the air next the surface of the earth
is moving in toward a kind of chimney by which it escapes to the upper regions of the atmosphere. A study of cyclones and tornadoes, or even of the little air-whirls which in hot weather lift the dust of our streets, shows that the particles of the atmosphere in rushing in toward the centre of upward movement take on the same whirling motion as do the molecules of water in the basin--in fact, the two actions are perfectly comparable in all essential regards, except that the fluid is moving downward, while the air flows upward. Briefly stated, the reason for the movement of fluid and gas in the whirling way is as follows: If every particle on its way to the centre moved on a perfectly straight line toward the point of escape, the flow would be directly converging, and the paths followed would resemble the spokes of a wheel. But when by chance one of the particles sways ever so little to one side of the direct way, a slight lateral motion would necessarily be established. This movement would be due to the fact that the particle which pursued the curved line would press against the particles on the out-curved side of its path--or, in other words, shove them a little in that direction--to the extent that they departed from the direct line they would in turn communicate the shoving to the next beyond. When two particles are thus shoving on one side of their paths, the action which makes for revolution is doubled, and, as we readily see, the whole mass may in this way become quickly affected, the particles driven out of their path, moving in a curve toward the centre. We also see that the action is accumulative: the more curved the path of each particle, the more effectively it shoves; and so, in the case of the basin, we see the whirling rapidly developed before our eyes. In falling in toward the centre the particles of star dust or vapour |
|