Outlines of the Earth's History - A Popular Study in Physiography by Nathaniel Southgate Shaler
page 64 of 476 (13%)
page 64 of 476 (13%)
![]() | ![]() |
|
general terms, and we can safely take them as such; but in this, as in
other instances, it is well to qualify our acceptance of the statements by the memory that all things are infinitely more complicated than we can possibly conceive or represent them to be. We have next to consider the rotations of the planetary spheres upon their axes, together with the similar movement, or lack of it, in the case of their satellites. This rotation, according to the nebular hypothesis, may be explained by the movements which would set up in the share of matter which was at first a ring of the solar nebula, and which afterward gathered into the planetary aggregation. The way of it may be briefly set forth as follows: Such a ring doubtless had a diameter of some million miles; we readily perceive that the particles of matter in the outer part of the belt would have a swifter movement around the sun than those on the inside. When by some disturbance, as possibly by the passage of a great meteoric body of a considerable gravitative power, this ring was broken in two, the particles composing it on either side would, because of their mutual attraction, tend to draw away from the breach, widening that gap until the matter of the broken ring was aggregated into a sphere of the star dust or vapour. When the nebulous matter originally in the ring became aggregated into a spherical form, it would, on account of the different rates at which the particles were moving when they came together, be the surer to fall in toward the centre, not in straight lines, but in curves--in other words, the mass would necessarily take on a movement of rotation essentially like that which we have described in setting forth the nebular hypothesis. In the stages of concentration the planetary nebulæ might well repeat those through which the greater solar mass proceeded. If the volume of |
|