Scientific American Supplement, No. 365, December 30, 1882 by Various
page 44 of 115 (38%)
page 44 of 115 (38%)
|
This paper was mainly a general account of some extensive experiments on the flow of water in the Ganges Canal, lasting over four years--1874-79. Their principal object was to find a good mode of discharge measurements for large canals, and to test existing formulæ. There are about 50,000 velocity, and 600 surface-slope measurements, besides many special experiments. The Ganges Canal, from its great size, from the variety of its branches abounding in long straight reaches, and from the power of control over the water in it, was eminently suited for such experiments. An important feature was the great range of conditions, and, therefore, also of results obtained. Thus the chief work was done at thirteen sites in brickwork and in earth, some being rectangular and others trapezoidal, and varying from 193 ft. to 13 ft. in breadth, and from 11 ft. to 7 in. in depth, with surface-slopes from 480 to 24 per million, velocities from 7.7 ft. to 0.6 ft. per second, and discharges from 7,364 to 114 cubic feet per second. For all systematic velocity measurements, floats were exclusively used, viz., surface floats, double floats, and loaded rods. Their advantages and disadvantages had been fully discussed in the detailed treatise "Roorkee Hydraulic Experiments"--1881. They measured only "forward velocity," the practically useful part of the actual velocity. The motion of water, even when tranquil to the eye, was found to be technically "unsteady;" it was inferred that there is no definite velocity at any point, and that the velocity varies everywhere largely, both in direction and in magnitude. The average of, say, fifty forward velocity measurements at any one point was pretty constant, so that there must be probably average steady motion. Hence average forward velocity measurements would be the only ones of much practical use. To obtain these would be tedious and costly, and special arrangements would be required to obviate the effects of a change in the state of water, which often occurred in a long experiment, as when velocities at many |
|