Geological Observations on South America by Charles Darwin
page 47 of 461 (10%)
page 47 of 461 (10%)
|
an inclined surface, thickly capped by well-rounded pebbles of about the
same size, would be ultimately left. (On the eastern side of Chiloe, which island we shall see in the next chapter is now rising, I observed that all the beaches and extensive tidal-flats were formed of shingle.) On the gravel now accumulating, the waves, aided by the wind, sometimes throw up a thin covering of sand, together with the common coast-shells. Shells thus cast up by gales, would, during an elevatory period, never again be touched by the sea. Hence, on this view of a slow and gradual rising of the land, interrupted by periods of rest and denudation, we can understand the pebbles being of about the same size over the entire width of the step-like plains,--the occasional thin covering of sandy earth,--and the presence of broken, unrolled fragments of those shells, which now live exclusively near the coast. SUMMARY OF RESULTS. It may be concluded that the coast on this side of the continent, for a space of at least 1,180 miles, has been elevated to a height of 100 feet in La Plata, and of 400 feet in Southern Patagonia, within the period of existing shells, but not of existing mammifers. That in La Plata the elevation has been very slowly effected: that in Patagonia the movement may have been by considerable starts, but much more probably slow and quiet. In either case, there have been long intervening periods of comparative rest, during which the sea corroded deeply, as it is still corroding, into the land. (I say COMPARATIVE and not ABSOLUTE rest, because the sea acts, as we have seen, with great denuding power on this whole line of coast; and therefore, during an elevation of the land, if excessively slow (and of course during a subsidence of the land), it is quite possible that lines of cliff might be formed.) That the periods of denudation and elevation were contemporaneous and equable over great spaces of coast, as shown by the |
|