Side-Lights on Astronomy and Kindred Fields of Popular Science by Simon Newcomb
page 115 of 331 (34%)
page 115 of 331 (34%)
![]() | ![]() |
|
periods of time in order that everything possible to learn may be
discovered. Our own moon is one of the enigmas of the mathematical astronomer. Observations show that she is deviating from her predicted place, and that this deviation continues to increase. True, it is not very great when measured by an ordinary standard. The time at which the moon's shadow passed a given point near Norfolk during the total eclipse of May 29, 1900, was only about seven seconds different from the time given in the Astronomical Ephemeris. The path of the shadow along the earth was not out of place by more than one or two miles But, small though these deviations are, they show that something is wrong, and no one has as yet found out what it is. Worse yet, the deviation is increasing rapidly. The observers of the total eclipse in August, 1905, were surprised to find that it began twenty seconds before the predicted time. The mathematical problems involved in correcting this error are of such complexity that it is only now and then that a mathematician turns up anywhere in the world who is both able and bold enough to attack them. There now seems little doubt that Jupiter is a miniature sun, only not hot enough at its surface to shine by its own light The point in which it most resembles the sun is that its equatorial regions rotate in less time than do the regions near the poles. This shows that what we see is not a solid body. But none of the careful observers have yet succeeded in determining the law of this difference of rotation. Twelve years ago a suspicion which had long been entertained that |
|