Side-Lights on Astronomy and Kindred Fields of Popular Science by Simon Newcomb
page 144 of 331 (43%)
page 144 of 331 (43%)
![]() | ![]() |
|
found that there is a second north pole in northern Siberia. Its
location has not, however, been so well determined as in the case of the American pole, and it is not yet satisfactorily shown that there is any one point in Siberia where the direction of the force is exactly downward. [Illustration with caption: DIP OF THE MAGNETIC NEEDLE IN VARIOUS LATITUDES. The arrow points show the direction of the north end of the magnetic needle, which dips downward in north latitudes, while the south end dips in south latitudes.] The declination and dip, taken together, show the exact direction of the magnetic force at any place. But in order to complete the statement of the force, one more element must be given--its amount. The intensity of the magnetic force is determined by suspending a magnet in a horizontal position, and then allowing it to oscillate back and forth around the suspension. The stronger the force, the less the time it will take to oscillate. Thus, by carrying a magnet to various parts of the world, the magnetic force can be determined at every point where a proper support for the magnet is obtainable. The intensity thus found is called the horizontal force. This is not really the total force, because the latter depends upon the dip; the greater the dip, the less will be the horizontal force which corresponds to a certain total force. But a very simple computation enables the one to be determined when the value of the other is known. In this way it is found that, as a general rule, the magnetic force is least in the earth's equatorial regions and increases as we approach either of the magnetic poles. |
|