Side-Lights on Astronomy and Kindred Fields of Popular Science by Simon Newcomb
page 152 of 331 (45%)
page 152 of 331 (45%)
![]() | ![]() |
|
self-evident. Yet their vital principle is not so much that of
being self-evident as being, from the nature of the case, incapable of demonstration. Our edifice must have some support to rest upon, and we take these axioms as its foundation. One example of such a geometric axiom is that only one straight line can be drawn between two fixed points; in other words, two straight lines can never intersect in more than a single point. The axiom with which we are at present concerned is commonly known as the 11th of Euclid, and may be set forth in the following way: We have given a straight line, A B, and a point, P, with another line, C D, passing through it and capable of being turned around on P. Euclid assumes that this line C D will have one position in which it will be parallel to A B, that is, a position such that if the two lines are produced without end, they will never meet. His axiom is that only one such line can be drawn through P. That is to say, if we make the slightest possible change in the direction of the line C D, it will intersect the other line, either in one direction or the other. The new geometry grew out of the feeling that this proposition ought to be proved rather than taken as an axiom; in fact, that it could in some way be derived from the other axioms. Many demonstrations of it were attempted, but it was always found, on critical examination, that the proposition itself, or its equivalent, had slyly worked itself in as part of the base of the reasoning, so that the very thing to be proved was really taken for granted. [Illustration with caption: FIG. I] |
|