Side-Lights on Astronomy and Kindred Fields of Popular Science by Simon Newcomb
page 43 of 331 (12%)
page 43 of 331 (12%)
![]() | ![]() |
|
and hence the more stars we see. The fact that the increase in the
number of stars seen towards the equatorial region of the system is greater, the smaller the stars, is the natural consequence of the fact that distant stars come within our view in greater numbers towards the equatorial than towards the polar regions. Objections have been raised to the Herschelian view on the ground that it assumes an approximately uniform distribution of the stars in space. It has been claimed that the fact of our seeing more stars in one direction than in another may not arise merely from our looking through a deeper stratum, as Herschel supposed, but may as well be due to the stars being more thinly scattered in the direction of the axis of the system than in that of its equatorial region. The great inequalities in the richness of neighboring regions in the Milky Way show that the hypothesis of uniform distribution does not apply to the equatorial region. The claim has therefore been made that there is no proof of the system extending out any farther in the equatorial than in the polar direction. The consideration of this objection requires a closer inquiry as to what we are to understand by the form of our system. We have already pointed out the impossibility of assigning any boundary beyond which we can say that nothing exists. And even as regards a boundary of our stellar system, it is impossible for us to assign any exact limit beyond which no star is visible to us. The analogy of collections of stars seen in various parts of the heavens leads us to suppose that there may be no well-defined form to our system, but that, as we go out farther and farther, we shall see occasional scattered stars to, possibly, an indefinite distance. |
|