Side-Lights on Astronomy and Kindred Fields of Popular Science by Simon Newcomb
page 50 of 331 (15%)
page 50 of 331 (15%)
![]() | ![]() |
|
for the circuit. Of other stars having a rapid motion only about
one hundred would complete their course in less than a million of years. Quite recently a system of observations upon stars to the ninth magnitude has been nearly carried through by an international combination of observatories. The most important conclusion from these observations relates to the distribution of the stars with reference to the Milky Way, which we have already described. We have shown that stars of every magnitude, bright and faint, show a tendency to crowd towards this belt. It is, therefore, remarkable that no such tendency is seen in the case of those stars which have proper motions large enough to be accurately determined. So far as yet appears, such stars are equally scattered over the heavens, without reference to the course of the Milky Way. The conclusion is obvious. These stars are all inside the girdle of the Milky Way, and within the sphere which contains them the distribution in space is approximately uniform. At least there is no well-marked condensation in the direction of the galaxy nor any marked thinning out towards its poles. What can we say as to the extent of this sphere? To answer this question, we have to consider whether there is any average or ordinary speed that a star has in space. A great number of motions in the line of sight--that is to say, in the direction of the line from us to the star--have been measured with great precision by Campbell at the Lick Observatory, and by other astronomers. The statistical investigations of Kaptoyn also throw much light on the subject. The results of these investigators agree well in showing an average speed in space--a straight-ahead |
|