A Treatise of Human Nature by David Hume
page 61 of 704 (08%)
page 61 of 704 (08%)
![]() | ![]() |
|
|
order to give a termination to bodies; and others eluded the force of
this reasoning by a heap of unintelligible cavils and distinctions. Both these adversaries equally yield the victory. A man who hides himself, confesses as evidently the superiority of his enemy, as another, who fairly delivers his arms. Thus it appears, that the definitions of mathematics destroy the pretended demonstrations; and that if we have the idea of indivisible points, lines and surfaces conformable to the definition, their existence is certainly possible: but if we have no such idea, it is impossible we can ever conceive the termination of any figure; without which conception there can be no geometrical demonstration. But I go farther, and maintain, that none of these demonstrations can have sufficient weight to establish such a principle, as this of infinite divisibility; and that because with regard to such minute objects, they are not properly demonstrations, being built on ideas, which are not exact, and maxims, which are not precisely true. When geometry decides anything concerning the proportions of quantity, we ought not to look for the utmost precision and exactness. None of its proofs extend so far. It takes the dimensions and proportions of figures justly; but roughly, and with some liberty. Its errors are never considerable; nor would it err at all, did it not aspire to such an absolute perfection. I first ask mathematicians, what they mean when they say one line or surface is EQUAL to, or GREATER or LESS than another? Let any of them give an answer, to whatever sect he belongs, and whether he maintains the composition of extension by indivisible points, or by quantities divisible in infinitum. This question will embarrass both of them. |
|


