A Treatise of Human Nature by David Hume
page 67 of 704 (09%)
page 67 of 704 (09%)
![]() | ![]() |
|
|
It is true, mathematicians pretend they give an exact definition of a
right line, when they say, it is the shortest way betwixt two points. But in the first place I observe, that this is more properly the discovery of one of the properties of a right line, than a just deflation of it. For I ask any one, if upon mention of a right line he thinks not immediately on such a particular appearance, and if it is not by accident only that he considers this property? A right line can be comprehended alone; but this definition is unintelligible without a comparison with other lines, which we conceive to be more extended. In common life it is established as a maxim, that the straightest way is always the shortest; which would be as absurd as to say, the shortest way is always the shortest, if our idea of a right line was not different from that of the shortest way betwixt two points. Secondly, I repeat what I have already established, that we have no precise idea of equality and inequality, shorter and longer, more than of a right line or a curve; and consequently that the one can never afford us a perfect standard for the other. An exact idea can never be built on such as are loose and undetermined. The idea of a plain surface is as little susceptible of a precise standard as that of a right line; nor have we any other means of distinguishing such a surface, than its general appearance. It is in vain, that mathematicians represent a plain surface as produced by the flowing of a right line. It will immediately be objected, that our idea of a surface is as independent of this method of forming a surface, as our idea of an ellipse is of that of a cone; that the idea of a right line is no more precise than that of a plain surface; that a right line may flow irregularly, and by that means form a figure quite different from a plane; and that therefore we must suppose it to flow along two right |
|


