The Story of Electricity by John Munro
page 21 of 181 (11%)
page 21 of 181 (11%)
|
the process, and the chemical action keeps it up. Oxygen, being an
"electro-negative" element in chemistry, is attracted to the zinc, and hydrogen, being "electro-positive," is attracted to the copper. The difference of electrical condition or "potential" between the plates by which the current is started has been called the electromotive force, or force which puts the electricity in motion. The obstruction or hindrance which the electricity overcomes in passing through its conductor is known as the RESISTANCE. Obviously the higher the electromotive force and the lower the resistance, the stronger will be the current in the conductor. Hence it is desirable to have a cell which will give a high electromotive force and a low internal resistance. Voltaic cells are grouped together in the mode of Leyden jars. Figure 13 shows how they are joined "in series," the zinc or negative pole of one being connected by wire to the copper or positive pole of the next. This arrangement multiplies alike the electromotive force and the resistance. The electromotive force of the battery is the sum of the electromotive forces of all the cells, and the resistance of the battery is the sum of the resistances of all the cells. High electromotive forces or "pressures" capable of overcoming high resistances outside the battery can be obtained in this way. Figure 14 shows how the zincs are joined "in parallel," the zinc or negative pole of one being connected by wire to the zinc or negative pole of the rest, and all the copper or positive poles together. This arrangement does not increase the electromotive |
|