The Story of Electricity by John Munro
page 42 of 181 (23%)
page 42 of 181 (23%)
|
round to the other. They are never broken, and apparently they are
lines of stress in the circumambient ether. A pivoted magnet tends to range itself along these lines, and thus the compass guides the sailor on the ocean by keeping itself in the line between the north and south magnetic poles of the earth. Faraday called them lines of magnetic force, and said that the stronger the magnet the more of these lines pass through a given space. Along them "magnetic induction" is supposed to be propagated, and a magnet is thus enabled to attract iron or any other magnetic substance. The pole induces an opposite pole to itself in the nearest part of the induced body and a like pole in the remote part. Consequently, as unlike poles attract and like repel, the soft iron is attracted by the inducing pole much as a pithball is attracted by an electric charge. The resemblances of electricity and magnetism did not escape attention, and the derangement of the compass needle by the lightning flash, formerly so disastrous at sea, pointed to an intimate connection between them, which was ultimately disclosed by Professor Oersted, of Copenhagen, in the year 1820. Oersted was on the outlook for the required clue, and a happy chance is said to have rewarded him. His experiment is shown in figure 29, where a wire conveying a current of electricity flowing in the direction of the arrow is held over a pivoted magnetic needle so that the current flows from south to north. The needle will tend to set itself at right angles to the wire, its north or north-seeking pole moving towards the west. If the direction of the current is reversed, the needle is deflected in the opposite direction, its north pole moving towards the east. Further, if the wire is held below the needle, in the first place, the north pole will turn |
|