The Story of Electricity by John Munro
page 53 of 181 (29%)
page 53 of 181 (29%)
|
is continuous, or constant in its direction.
The current of the series machine varies with the resistance of the external or working circuit, because that is included in the circuit of the field magnets and the armature. Thus, if we vary the number of electric lamps fed by the machine, we shall vary the current it is capable of yielding. With arc lamps in series, by adding to the number in circuit we increase the resistance of the outer circuit, and therefore diminish the strength of the current yielded by the machine, because the current, weakened by the increase of resistance, fails to excite the field magnets as strongly as before. On the other hand, with glow lamps arranged in parallel, the reverse is the case, and putting more lamps in circuit increases the power of the machine, by diminishing the resistance of the outer circuit in providing more cross-cuts for the current. This, of course, is a drawback to the series machine in places where the number of lamps to be lighted varies from time to time. In the "shunt-wound" machine the field magnets are excited by diverting a small portion of the main current from the armature through them, by means of a "shunt" or loop circuit. Thus in figure 42 where C is the commutator and b b' the brushes, M is a shunt circuit through the magnets, and E is the external or working circuit of the machine. The small arrows indicate the directions of the currents. With this arrangement the addition of more glow lamps to the external circuit E DIMINISHES the current, because the portion of it which flows through the by-path M, and excites the magnets, is less now that the alternative route for the current through E is of lower resistance than before. When fewer glow lamps are in the external |
|