The Story of Electricity by John Munro
page 60 of 181 (33%)
page 60 of 181 (33%)
|
beautified and preserved from rust in this way.
Figure 44 illustrates an electro-plating bath in which a number of spoons are being plated. A portion of the vat V is cut away to show the interior, which contains a solution S of the double cyanide of gold and potassium when gold is to be laid, and the double cyanide of silver and potassium when silver is to be deposited. The electrodes are hung from metal rods, the anode A being a plate of gold or silver G, as the case may be, and the cathode C the spoons in question. When the current of the battery or dynamo passes through the bath from the anode to the cathode, gold or silver is deposited on the spoons, and the bath recuperates its strength by consuming the gold or silver plate. Enormous quantities of copper are now deposited in a similar way, sulphate of copper being the solution and a copper plate the anode. Large articles of iron, such as the parts of ordnance, are sometimes copper-plated to preserve them from the action of the atmosphere. Seamless copper pipes for conveying steam, and wires of pure copper for conducting electricity, are also deposited, and it is not unlikely that the kettle of the future will be made by electrolysis. Nickel-plating is another extensive branch of the industry, the white nickel forming a cloak for metals more subject to corrosion. Nickel is found to deposit best from a solution of the double sulphate of nickel and ammonia. Aluminium, however, has not yet been successfully deposited by electricity. In 1836 De la Rue observed that copper laid in this manner on |
|