The Story of Electricity by John Munro
page 75 of 181 (41%)
page 75 of 181 (41%)
![]() | ![]() |
|
the barrel at the transmitting station. In this way a facsimile of
the gelatine picture is produced at the distant station, and an electrotype or cliche of it can be made for printing purposes. The method is, in fact, a species of electric line graving, and Mr. Amstutz hopes to apply it to engraving on gold, silver, or any soft metal, not necessarily at a distance. We know that an electric current in one wire can induce a transient current in a neighbouring wire, and the fact has been utilised in the United States by Phelps and others to send messages from moving trains. The signal currents are intermittent, and when they are passed through a conductor on the train they excite corresponding currents in a wire run along the track, which can be interpreted by the hum they make in a telephone. Experiments recently made by Mr. W. H. Preece for the Post Office show that with currents of sufficient strength and proper apparatus messages can be sent through the air for five miles or more by this method of induction. We come now to the submarine telegraph, which differs in many respects from the overland telegraph. Obviously, since water and moist earth is a conductor, a wire to convey an electric current must be insulated if it is intended to lie at the bottom of the sea or buried underground. The best materials for the purpose yet discovered are gutta-percha and india-rubber, which are both flexible and very good insulators. The first submarine cable was laid across the Channel from Dover to Calais in 1851, and consisted of a copper strand, coated with gutta-percha, and protected from injury by an outer sheath of hemp |
|